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The Functional Form of a Learning Curve

!
y = aX-b 

X = cumulative # of cases 

y = time required to peform last task/procedure  

a = time required to peform 1°task/procedure  

b = a value related to the percentage associated with the Learning Curve 

(Learning index)



b 0.000 0.074 0.152 0.234 0.322 0.415 0.515 0.621 0.737 0.862 1.000 1.322 1.737 2.322 3.322
p 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 40% 30% 20% 10%

Ex. 1 
y = 100*100-0 = 100* 1/1= 100

Ex. 2 
y = 100*100-1 = 100* 1/100= 1

Relationship Between b and p and	

% associated with the Learning Curve

y = aX-b



95%



Effect of Annual Growth Rate

EXAMPLE:  

✦ 3 Surgical Departments have the same 80% learning curve:  y=100x-0.322 

✦ During Year 1, all 3 Departments performed 5000 procedures 

✦ The 3 Departments have respective annual growth rates in patients of 5%, 10%, and 20% 

✦ Compare the three departments at the end of Year 4

Cummulative # cases at End of Year 4
Hours Required to Perform 

Most Recent Procedure

x y =100 x-0.322

A 5% x  = [1.00+(1.05)+(1.05)2+(1.05)3](5000) = 15,764 4,453

B 10% x  = [1.00+(1.05)+(1.05)2+(1.05)3](5000) = 16,551 4,384

C 20% x  = [1.00+(1.05)+(1.05)2+(1.05)3](5000) = 18,202 4,252

DEPT

Annual Growth 
Rate in 

Procedures

Conclusion? 



# procedures

t

learning curve

Effect of Annual Growth RateEffect of Annual Growth Rate



Strategic Applications of a Learning Curve

FREQUENT DECREASES  
IN COST

REINVEST INCREASED TIME 
OUTSIDE O.R.

ANALISYS  

OF SURGICAL STAFF MEMBER



Learning Curve - Long and steep

✓ Fewer degrees of freedom (4)	


✓ Fulcrum effect / Stiffness 	


✓ 2D imaging (depth perception / spatial orientation)	


✓ Decreased ergonomics (ambidexterity)	


✓ Less tactile feedback	


✓ Impaired hand-eye coordination



Learning Curve - Unsteadiness 

✓ Structured training program	


✓ Trainee’s laparoscopic experience 	


✓ Mentoring vs proctoring	


✓ Trainer’s expertise and motivation	


✓ Forgetting factor   D R Towill Int J of Operations and production 
management 5, no.2 (1985)
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Skills transfer after surgical simulation-based training 1067

Table 1 Continued

Reference and LOE
Participants and

simulators Assessment procedure Results

Simulation training versus patient-based training
Franzeck et al.28 (2012) Medical students Camera navigation in

OR during
procedure

No significant difference between groups in any parameter
after training: organ visualization (P = 0·45), horizon
alignment (P = 0·08), time to completion (P = 0·12) and
correct scope rotation handling (P = 0·60). Participants in
both groups spent equal time actually training on camera
navigation (P = 0·20). However, CG spent significantly
more overall time in OR than IG spent in skills laboratory
(P < 0·01)

Switzerland
RCT II

IG 12; LAP Mentor™ and
ProMIS™ surgical hybrid
simulator

CG 12; traditional training in
OR

Simulation training as part of comprehensive curriculum in additional to residency training versus conventional residency training
Palter and Grantcharov29

(2012)
General surgery residents

PGY 2–4
Right hemicolectomy IG attained higher level of technical proficiency than CG:

OSATS score (P = 0·030), procedure-specific score
(P = 0·122). IG residents able to perform more operative
steps than CG residents (P = 0·021)

Canada
RCT II

IG 9; curriculum including
simulation training on
LapSim® VR simulator

CG 9
Palter et al.30 (2013)
Canada
RCT II

General surgery residents
PGY 1–2

Cholecystectomy IG outperformed CG in the first 4 laparoscopic
cholecystectomies measured on OSATS rating scale
(P = 0·004, P = 0·036, P = 0·021, P = 0·023). No significant
difference in score between groups for 5th procedure
(P = 0·065)

IG 9, curriculum including
simulation training on
LapSim® VR simulator
and on FLS Training Box
simulator

CG 9

*This study comprised a randomized arm (comparing simulation-trained groups), for which sample size analysis was done, and a non-randomized arm
(comparing simulation-trained groups with control group). LOE, level of evidence according to National Health and Medical Research Council of
Australia15; RCT, randomized clinical trial; PGY, postgraduate year; IG, intervention group; CG, control group; VR, virtual reality; OSATS, Objective
Structured Assessment of Technical Skills; GOALS, Global Operative Assessment of Laparoscopic Skills; c.i., confidence interval; OSA-LS, Objective
Structured Assessment of Laparoscopic Salpingectomy; TEP, totally extraperitoneal; OR, operating room. Simulators: LapSim® VR simulator (Surgical
Science, Gothenburg, Sweden); laparoscopic stimulator and Minimal Access Therapy Unit (MATTU) (Limbs and Things, Bristol, UK); Fundamentals of
Laparoscopic Surgery (FLS) Training Box simulator (SAGES, Los Angeles, California, USA); Lap Mentor™ VR simulator (Simbionix, Cleveland, Ohio,
USA); Minimally Invasive Surgical Trainer – Virtual Reality (MIST-VR™; Mentice, Gothenburg, Sweden); ProMIS™ surgical hybrid simulator
(Haptica, Dublin, Ireland).

cantly higher than control participants in global perform-
ance for the assessment procedures. Eight18–21,23–25,27 of
these studies compared simulator-trained participants with
controls who did not have this training. Two studies29,30

compared the performance of participants who had simu-
lation training, as part of a comprehensive curriculum, in
addition to residency training with participants who had
only conventional residency training.

In addition to comparing simulator-trained partici-
pants with controls without simulation training, two
studies19,24 also compared participants trained in dif-
fering simulator modalities. One study19 reported that
simulator-trained participants scored significantly higher
in the GOALS assessment scores than those with no
simulator training and found no significant difference
between groups trained with different simulators (McGill
Inanimate System for Training and Evaluation of Laparo-
scopic Skills (MISTELS) – Fundamentals of Laparoscopic
Surgery (FLS); LAP Mentor™, Simbionix, Cleveland,
Ohio, USA). A study24 comprising a randomized arm

(comparing simulation-trained groups) and a non-
randomized arm (comparing simulation-trained groups
with control group), which compared intraoperative
performance for intracorporeal knot-tying of participants
trained using a LapSim® virtual reality (VR) simulator
(Surgical Science, Gothenburg, Sweden) or a laparoscopic
box trainer and a control group without simulation training,
found no significant difference between the VR-trained
group and the box-trained group using the OSATS global
rating scale. Both ex vivo groups performed significantly
better than the control group. Participants who had not had
simulation training achieved the proficiency level equiv-
alent to that of simulator-trained participants after six
repetitions in the OR.

One RCT22 reported no difference in the objective
assessment of technical skills in the OR for cholecystectomy
between simulator-trained participants and controls who
had no simulation training in any of the five GOALS
domains (Table 1).

© 2014 BJS Society Ltd www.bjs.co.uk BJS 2014; 101: 1063–1076
Published by John Wiley & Sons Ltd
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gray lev-
els and eight directions (0��360

� in steps of 45�) at a spatial
offset of 1 pixel. We compute twenty texture features after
averaging and normalizing over the GLCM. These features
are [9,11,12]: Autocorrelation, Contrast, Correlation, Cluster
prominence, Cluster shade, Dissimilarity, Energy, Entropy,
Homogeneity, Maximum probability, Sum of squares vari-
ance, Sum average, Sum variance, Sum entropy, Difference
variance, Difference entropy, Information measure of corre-
lation 1, Information measure of correlation 2, Inverse differ-
ence normalized, and Inverse difference moment normalized.
For LBP, we use the Local Configuration Pattern (LCP) with
rotation invariant Local Binary Patterns (LBP) as patterns of
interest for the LCP [10]. We use the multi-scale LBP-LC ap-
proach with different neighborhood and radius values to cap-
ture the motion dynamics at different granularity.

OSATS prediction: We test our framework for predicting
OSATS score in a leave-one-out cross validation (LOOCV)
scheme. After obtaining textural features using the GLCM
and LBP-LC methods, we create a linear regression model
using the training data for each OSATS criteria. First, we
use Linear Discriminant Analysis (LDA) to find a lower-
dimensional feature space in which three (grouped based
on OSATS range) skill levels in training data can be dis-
criminated. This provides a discriminating two-dimensional
feature space which can be used to predict the skill score of
test data. For LDA, we group the training data into three skill
levels: low (OSATS score  2), intermediate (2 < OSATS
score  3.5) and high (3.5 < OSATS score  5). A linear
regression model is obtained using the two dimensions in the
reduced LDA feature space.

To predict OSATS scores of a test sample, the test fea-
tures are first projected to the LDA space learnt during train-
ing. The reduced test features are then used to predict the
score using the regression function obtained during the train-
ing. To evaluate the efficacy of our framework, we calculate
the normalized root mean square error (NRMSE) given by,
NRMSE =

qP
(yn�ŷn)2P

(yn)2
where y

n

is the ground truth skill
score and ŷ

n

is the predicted skill score of the nth sample. We
also compute the Pearson correlation coefficient R and the
corresponding p value between the true and predicted scores.

4. RESULTS AND DISCUSSION

Surgical video data: We recruited 16 participants (medical
students) for our case study. Previous suturing expertise and
background of the participants varied. Every participant per-
formed suturing activities involving tasks such as stitching,
knot tying, etc. using a needle-holder, forceps and the tissue
suture pads. These training sessions were recorded using a
standard video camera (50fps, 1280⇥ 720 pixels), which was
mounted on a tripod. Fifteen participants performed two ses-
sions of a suturing task. An expert surgeon also performed
three sessions giving a total of thirty-three videos. The aver-

(a) (b) 

Fig. 3. (a) Detected STIPS in a sample frame represent the moving objects
in the scene, (b) STIPs classified into distinct motion classes.

Fig. 4. Top row: Motion class counts for a novice (left), and an expert
(right) surgeon. The five classes are plotted at an offset on y axis for clarity.
Note that the novice motions exist in almost all frames for all motion classes
as compared to fewer motion for expert surgeon. The plots correspond to a
single suturing and knot tying task and demonstrate that experts use fewer
motions than novices as reported in [6]. Bottom row: Frame kernel matrices
corresponding to motion class counts in top row.

age duration of the videos is 18 minutes. Ground truth assess-
ment was provided by the expert surgeon based on the OSATS
scoring scheme on a scale of [1-5].

Skill relevant motion dynamics: Figure 3 shows the de-
tected STIPs and motion classes in a sample frame. Figure 4
(top row) shows the time frequency counts for five motion
classes. It is clear that the pixel intensity transitions in the
frame kernel matrices (Figure 4, bottom row) correspond to
motion dynamics and vary according to the skill level of the
surgeon. Thus, frame kernel matrices provide a suitable rep-
resentation to encode skill relevant motion.

OSATS prediction: Figure 5 shows the prediction results
for three OSATS criteria using LBP-LC features. Similar re-
sults were obtianed for other 4 criteria using LBP-LC fea-
tures. Table 2 shows the NRMSE and correlation coefficient
R between the ground truth and the predicted OSATS criteria
using LBP-LC and GLCM features at different texture gran-
ularity. Multi-scale LBP-LC features resulted in high corre-
lation between the true and predicted scores (Table 2, column
4). We also achieved significant correlation with GLCM fea-
tures for several OSATS criteria, however, overall better per-
formance was achieved with LBP-LC features.

5. SUMMARY AND CONCLUSION

We proposed a video based automated framework for surgical
OSATS score prediction in training scenarios using silicone
suture pads. Our approach does not involve manual gesture

Y Sharma et Al. “Automated surgical OSATS prediction from videos”, Georgia Inst Tech. 	
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corresponding p value between the true and predicted scores.

4. RESULTS AND DISCUSSION

Surgical video data: We recruited 16 participants (medical
students) for our case study. Previous suturing expertise and
background of the participants varied. Every participant per-
formed suturing activities involving tasks such as stitching,
knot tying, etc. using a needle-holder, forceps and the tissue
suture pads. These training sessions were recorded using a
standard video camera (50fps, 1280⇥ 720 pixels), which was
mounted on a tripod. Fifteen participants performed two ses-
sions of a suturing task. An expert surgeon also performed
three sessions giving a total of thirty-three videos. The aver-
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Note that the novice motions exist in almost all frames for all motion classes
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suture pads. Our approach does not involve manual gesture

Y Sharma et Al. “Automated surgical OSATS prediction from videos”, Georgia Inst Tech. 	


2014, International Symposium on Biomedical Imaging



“Simulation based mastery learning improves patient outcomes in 
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“Trends and results of the first 5 years of fundamentals of 
laparoscopic surgery (FLS) certification testing” 	

Okrainec A, Soper NJ, Swanstrom LL, Fried GM B.  Surg Endosc. 2011
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✓ Students	

✓ Residents	

✓ Novice surgeons	

✓ Competent surgeons	

✓ Expert surgeons

“Preoperative warm-up effect” 	


Kahol et al.  American College of Surgeons 

vol. 208, n. 2 Feb 2009	


Mucksavage et al. J Endouro 2012; 26(7): 

765-68	




ANALYSIS OF THE TRANSFER OF TRAINING, SUBSTITLITIO.•, AND
FIDELITY OF SIMULATION OF TRAINING EQUIPM•ET

"If we could first know whete we are, and whither
we are drifting;, we could better Judge what to
do and how to do it." - Abraham Lincoln

The purpose of this report is to analyze the current oituation on

the cost and training o ffectiveness of training devices.

The cost and training effectiveness of training devices . re ideally

u determined by the collection of empirical data by controlled experiments.

At present, however, there is a paucity of such data. What does exist

U will be summarized in terms of the comonality of findings. Specific

current training situations will be analyzed to determine tasks which

can be learned in toe trainin,ý system and in the operatior.al situation.

From the results of the aaalyses of specific transfer/substitution

studies, an attempt will be made to generalize to various typs of

F1 training situations in order to arrive at an evaluatiqn ni the cost and

training effectiveness of trcining devices.

"Cost effectiveness" will be used in this paper to mean the use of

the least costly of several alternative training systems, all of which
could equally produce men trained to a specified level of proficiency.

Lower cost of training equipment allows (even demands) its use in place

of operational equipment.

The "traln-Ing effectiveness" of a training device is usually

expressed as a measuce of transfer of training. TransFar of training

refers to the degree to which practice in a trainer carries over to

(or affects) performance in an operational situation, as compared to the
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